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Abstract  Suppose that a vote consists of a linear ranking of alternatives, and that 
in a certain profile some single pivotal voter v is able to change the outcome of an 
election from s alone to t alone, by changing her vote from σ to τ.  A voting rule F 
is two-way monotonic if such an effect is only possible when v moves t from below 
s (according to σ) to above s (according to τ).  One-way monotonicity is the 
strictly weaker requirement that such an effect never occur when v makes the 
opposite switch, by moving s from below t to above t.  Two-way monotonicity is a 
very strong property, equivalent, over any domain, to strategy proofness.  It thus 
cannot be satisfied by any “reasonable” resolute voting rule over the full domain.  
One-way monotonicity fails for every Condorcet extension; in this respect, and in 
others, it resembles Moulin’s participation property, although the two properties 
are independent. One-way monotonicity holds for all sensible voting rules – those 
for which the election outcome is determined by the numerical value of a function 
called a sensible virtue.  Total score, as determined by any scoring rule, is a 
sensible virtue, but the class of sensible rules is larger than that of scoring rules.  
The names for these monotonicities arise from their interpretations in terms of 
manipulability.  We may think of either σ or τ as representing v’s sincere 
preferences.  For a two-way monotonic function, neither of these interpretations 
ever yields a successful manipulation.  For a one-way monotonic rule F, whenever 
one of the interpretations yields a successful manipulation, the other yields a 
positive response, in which F offers v a strictly better result when she votes 
sincerely. For such a rule F, each manipulation can thus be seen as part of the cost 
to be paid for appropriate responsiveness to the sincere will of the electorate.    
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§1  Introduction   
 
A real-valued function f is said to be monotonically increasing if whenever x1 < x2 we 
have f(x1) < f(x2) (for strictly increasing) or f(x1) ≤ f(x2) (for weakly increasing).  
Monotonicity properties for voting rules are loosely based on this idea; we say that such a 
rule F is monotonic if whenever one or more voters change their votes in a certain 
“direction,” the effect is to move the outcome of the election in a similar direction.  A 
vote, in our context, will consists of a strict preference ranking – a linear ordering without 
ties – of all alternatives, so it’s not completely clear what “direction” means; the variety 
of possible interpretations leaves room for a number of different monotonicity properties.  
This is the case even for resolute rules, which yield a unique winning alternative for each 
profile.  For irresolute rules, in which several alternatives may be tied as winners, the 
possibilities ramify further.  In the current paper we confine ourselves to resolute rules, 
but take up monotonicity in the irresolute context in the sequel, Sanver and Zwicker 
[2007]. 
     
Of the monotonicity properties considered to date in the voting literature, all are of the 
weakly increasing, or ≤ type, for a reason that seems at first to be compelling – it is 
unreasonable to expect the outcome of an election to change each time a few voters 
change their votes, because the margin of victory by the winner may be too large to be 
easily overcome. Among these, two major classes stand out. 
 
The first class contains monotonicities that have a normative appeal independent of any 
strategic concern. Simple monotonicity, which has most often simply been called 
monotonicity, has stood virtually alone as a representative of this class.  Loosely, it 
asserts that raising a single alternative s in a voter’s preferences (while leaving the 
ranking otherwise unchanged) is never detrimental to s’s prospects for winning.4  Most 
voting rules considered in the literature satisfy simple monotonicity, but it is known to 
fail for the following closely related rules: all scoring elimination rules (JH Smith 
[1973]), including Hare (or “alternative vote”), and plurality run-off.  Fishburn [1982] 
discusses other examples.  Simple monotonicity is a rather “weak” monotonicity but it 
does discriminate, albeit to a limited extent, among reasonable voting rules. 
 
This is in contrast to the second class of monotonicities, wherein the normative appeal 
rests on strategic considerations.  These properties arose as a consequence of explorations 
of strategy-proofness and implementation.  For example, Muller and Satterthwaite [1977] 
prove that for social choice functions defined over the full domain of preference profiles, 
strategy-proofness is equivalent to strong positive association – a monotonicity condition 
which Maskin [1977, 1999] showed to be necessary (but not sufficient) for Nash 
implementability. On the other hand, Nash implementability is equivalent to Danilov 
[1992] monotonicity which, although generally stronger, is equivalent to Maskin 
monotonicity for social choice rules that do not admit ties. In this case, a failure of the 
condition can typically be identified with a situation in which one voter can manipulate 
                                                
4 This may be the oldest known monotonicity property.  Other names have also been used over its 
relatively long history (which predates the modern resurrection of social choice theory in Black [1958] – 
see Brams and Fishburn [2002] and comments on page 120 of Fishburn [1982], including footnote 1).     



 3 

the outcome so as to obtain a preferred outcome by misrepresenting her preference. On 
the other hand, we know from Gibbard [1973] and Satterthwaite [1975] that over the full 
domain of preference profiles, a strategy-proof social choice function whose range 
contains at least three alternatives is dictatorial. Thus monotonicity properties in this 
second class are so strong that they hold for no reasonable (resolute) voting rule.  While 
their theoretical importance is significant, they are less useful as a basis for comparing 
realistic voting systems in terms of manipulability.5   
 
Our investigations arise from the following question.  Suppose that when the vote of 
some particular voter v is the ranking σ, alternative s is the sole winner of a certain 
election, but that when v votes instead for the ranking τ, while all other votes remain 
unchanged, some different alternative t is the sole winner.  Given such a pivot, what 
should “monotonicity” require, in terms of how σ and τ rank the two alternatives s and t, 
relative to each other? 
 
We introduce here two new monotonicity properties, based on answers to this question.  
The stronger property, two-way monotonicity, requires that the voter v described above 
must have lifted t from below s in σ, to above s in τ, and falls squarely into the second 
class, as it is equivalent to strategy-proofness. This property is not of independent 
interest, but it helps frame the idea for one-way monotonicity, its weaker cousin, which 
requires that v must not have lifted s from below t in σ, to above t in τ.  One-way 
monotonicity does appear to be new, and it discriminates usefully among standard voting 
rules.  One-way monotonicity is of “medium” strength, in that it holds of a number of 
natural voting rules, yet fails of a number of others.  We argue that it partakes of some 
traits from both classes. 
 
The rest of the paper is organized as follows.  In §2 we set the context and present 
necessary background material, while §3 introduces the properties of two-way and one-
way monotonicity.  As monotonicity and manipulability are often considered to be two 
sides of the same coin, we examine the interpretation of these new properties in terms of 
manipulability and strategy-proofness.  For one-way monotonicity, in particular, this 
analysis suggests some novel ways to think about the way a voting rule responds to 
changes in a voter’s expressed preferences.   
 
The sensible voting rules we introduce in §4 include all scoring rules and more, and are 
one-way monotonic.  In §5 we turn to electorates of variable size. Brams and Fishburn 
[1983] introduce the no-show paradox, wherein a voter may obtain a preferred outcome 
by staying home rather than voting.  Moulin [1988a, 1988b] shows that the participation 
axiom, which asserts that no no-show paradoxes occur, is satisfied by no Condorcet 
extension. Despite their difference in contexts (in that participation requires a variable 
electorate), one-way monotonicity and participation have some important relationships.  
                                                
5 One consequence is that some authors have published frequency studies, in which they compare neutral 
and anonymous voting rules such as the Borda count, or Copeland rule, by constructing one or more 
numerical measures of how frequent, or probable, are the instances of manipulability or failures of 
monotonicity.  They then apply these measures to versions of the original rule that have been rendered 
resolute through the use of a fixed ranking (a tie-breaking agenda).  We give a more detailed discussion 
of this literature in Section 3. 
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We establish that participation implies half-way monotonicity, a weak form of one-way 
monotonicity, and that the converse holds for voting rules satisfying homogeneity and 
reversal cancellation.  As stand-alone properties, however, one-way monotonicity and 
participation are independent.  
 
In §6 we present our main negative result.  By exploiting the parallels between 
participation and one-way monotonicity, and introducing some of the ideas from §5, we 
are able to elaborate on Moulin’s argument and show that no Condorcet extension is one-
way monotonic.  Hare’s rule also fails one-way monotonicity, as does the closely related 
plurality run-off rule, albeit with a small qualification.  These results are the basis for our 
claim that one-way monotonicity discriminates usefully among plausible voting rules.   
 
In the concluding section 7 we point to future areas of research, including that of further 
clarifying the relationship among the various monotonicity properties in the context of 
irresolute voting rules that are both neutral and anonymous.  This issue bears directly on 
the methodology we use throughout the paper, of rendering all voting rules resolute by 
employing a fixed tie-breaking agenda.  
 
 
 
 

§2  Basic notions  
 
Let N = {i, j, . . .} be a finite set of n voters and A = {s, t, . . .} be a finite set of m ≥ 3 
alternatives.  A profile R for N consists of an assignment, to each i ∈ N, of a linear 
ranking (strict linear ordering) σ = R(i) of A.  We’ll write s <σ t  to indicate that a voter 
with ranking σ strictly prefers t to s, and depict such a situation by placing t higher than s 
in σ : 
 

σ 
M 
t 
M 
s 
M 

We’ll use ≤σ to denote the corresponding weak linear order on A. 
 
A social choice rule or voting rule is a function F that returns, for each profile R for N,  
a nonempty set F(R) ⊆ A.  We think of the alternatives in F(R) as being the winners of 
the election represented by R, so that F(R) > 1 would indicate a tie among the several 
alternatives in F(R).  A resolute voting rule F is one for which there are never ties: 
F(R) = 1 for every profile R, and we write F(R) = s  in place of F(R) = {s}.  An 
irresolute rule F is one that is not required to be resolute.  The domain for a voting rule 
F will most often consist of the full domain of all possible profiles for some fixed (but 
unspecified) N.  However, at various times we will impose conditions on the number of 
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voters, or will assume that a single rule applies to a variable electorate (discussed in §5), 
or will refer to a restricted domain in which only certain profiles for N are allowed.  
When we say, then, that one property P of voting rules implies a second property Q, we 
may mean that every type-P rule on the full domain is a type-Q rule.  A stronger assertion 
would be that for every domain D, every type-P rule on D is a type-Q rule, and an 
assertion of intermediate strength might state that the implication holds for every domain 
that is “sufficiently rich.” 
 
For many voting applications, the properties of neutrality (all alternatives are treated 
equally) and anonymity (all alternatives are treated equally) would be considered to be 
absolute minimum fairness requirements.6  However, except in certain special 
circumstances (see Moulin [1988a], exercise 9.9 on 252-253) voting rules that are both 
anonymous and neutral cannot also be resolute, and this creates some difficulty, because 
defining monotonicity or manipulability for irresolute rules is notoriously difficult. 
 
We will sidestep this problem in one of the standard ways, by breaking all ties for any 
given irresolute rule.  If p is any fixed agenda (that is, a strict ranking of the alternatives) 
and F is a voting rule, F  p will denote the resolute rule obtained from F  by setting  

F p(R) = p-max[F (R)] 
where p-max[S] is the p-maximal element of S for any nonempty S ⊆ A.  We can think 
of p as representing the preference ranking of a tie-breaking dictator who is absent, in 
that she is not one of the voters. 
 
Of course, imposing such a tie-breaking agenda on an anonymous and neutral rule F 
typically destroys neutrality (while preserving anonymity).  Can this approach, then, ever 
yield useful information about monotonicity properties for fair voting rules?  
Surprisingly, the answer is yes – but a satisfactory explanation requires a rather detailed 
examination of monotonicity properties for irresolute rules and their relationships to tie-
breaking agendas.  We say a bit more about this in the concluding section, and refer the 
reader to Sanver and Zwicker [2007] for details.7 
 
A number of voting rules make use only of the pairwise majority information in a profile.  
Given any profile R, and alternatives s and x, let #R(s > x) denote the number of voters 
who rank s over x, and NetR(s > x) denote #R(s > x) - #R(x > s), the net pairwise majority 
of s over x.  Of course, NetR(s > x) > 0 holds exactly when a strict majority of voters 
ranks s over x.  If R is a profile and s is an alternative satisfying that for each alternative   
x ≠ s, a strict majority of voters rank s over x, then we say that s is a Condorcet winner.  
We’ll use D

Condorcet
 to denote the Condorcet domain, consisting of those profiles for 

                                                
6 For precise definitions of neutrality and anonymity, see (for example) Moulin [1988a]. 
7 There is a second reason to be suspicious of the tie-breaking agenda approach.  When we observe in §4 
and §6, that (after ties are broken by an agenda) the Borda count is one-way monotonic and the Copeland 
rule is not, are we learning anything about the innate properties of these two voting rules?  Might it be the 
case that these results tell us more about the smoothness with which these rules mate with tie-breaking 
agendas, than they do about one-way monotonicity?  We refer the reader to the conclusion, and to Sanver 
and Zwicker [2007] for further discussion. 
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which a Condorcet winner exists.  Condorcet winners are, of course, unique on D
Condorcet

, 
and the voting rule that picks the Condorcet winner over this domain is known as the 
Condorcet rule, or pairwise majority rule.  Any voting rule that is defined over the full 
domain and agrees with the Condorcet rule on D

Condorcet
 is a Condorcet extension (or is 

Condorcet consistent).   
 
The Copeland score of an alternative s is simply the number of alternatives x satisfying 
NetP(s > x) > 0, and the Copeland rule is the Condorcet extension that chooses the set of 
alternatives with maximal Copeland score.  The net Simpson score of an alternative s for 
profile R is  

tR*(s) = Min{NetR(s > x)x ≠ s}, 
We’ll freely drop any “R” subscript when context allows.  The Simpson rule chooses the 
set of alternatives with maximal Simpson score; it is another Condorcet extension, as 
t*(s) > 0 is satisfied if and only if s is a Condorcet winner.  Both Copeland and Simpson 
are net pairwise rules, in that they make use only of the information contained in the net 
pairwise majorities. 
 
Scoring rules constitute a second important class of voting rules.  A vector 〈w〉 = 〈w1, w2, 
. . ., wm〉 is a vector of scoring weights provided that the wi are real numbers satisfying  
w1 ≥ . . . ≥ wm.  Such a vector is proper if w1 > wm and is strict if w1 > w2 > . . . > wm.   
Every vector 〈w〉 of scoring weights induces a corresponding scoring rule, as follows:  
each voter assigns w1 points to her top-ranked alternative, w2 to her second-ranked, etc., 
and the rule chooses the set of alternatives with maximal score (where the score of an 
alternative s is the sum of all points awarded to s by all voters).  We’ll say that the 
scoring rule is strict (or proper) according to whether it is induced by some strict (or 
proper) vector.  The best-known scoring rules include the plurality rule, which is induced 
by the vector 〈1, 0 . . ., 0〉, so that the plurality score of an alternative s is simply the 
number of voters who top-rank s; the anti-plurality rule, which is induced by the vector 
〈0, 0 . . ., 0, -1〉, so that the anti-plurality score of an alternative s is minus the number of 
voters who bottom-rank s; and the Borda count, which is induced by the vector  
〈m-1, m-3, . . ., 1-m〉8, so that the Borda score of an alternative s is equal to the sum  

! 

Net(s > x)

x"A#{s}

$  

of the pairwise net majorities for s (see, for example, Zwicker [1991]).  The Borda count 
is thus a net pairwise rule (but is well known to not be a Condorcet extension).  
 
 
 
 

                                                
8 For the Borda count, it would suffice to use any other vector of scoring weights with a fixed positive 
difference k = wi - wi+1 > 0 between every pair of adjacent scoring weights. 
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§3 Monotonicity properties and strategy-proofness 
  
Let v ∈ N, P be a profile for the set N - {v}, and σ be any strict ranking of A.  Then P∧σ  
denotes the profile for N obtained from P by adding  v’s vote for σ ; i.e., for each  i ∈ N 
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 Definition 3.1  A focus for a resolute social choice function F is a vector  
(P, v, σ→s, τ→t) satisfying: 

• v ∈ N is a voter and P is a profile for the set N - {v},  
• σ and τ are strict rankings of A, and s and t are alternatives in A, 
• F(P∧σ) = s, and 
• F(P∧τ) = t. 

If we additionally require that s ≠ t, (P, v, σ→s, τ→t) is a pivot.  
 
Thus, a pivot is a situation wherein a pivotal voter v has a choice between voting σ and 
voting τ, and this choice affects the outcome of the election.   
 
Definition 3.2  A resolute social choice function F is two-way monotonic if every pivot 
(P, v, σ→s, τ→t)  for F satisfies  s >σ t  and  t >τ s. 
 
Two-way monotonicity thus asserts that whenever the effect of a pivotal voter’s change 
in vote from σ to τ is to switch the winner of the election from s to t, the pivotal voter 
must have raised t from below s according to σ, to above s according to τ (see Figure 1).  
A seemingly weaker requirement, then, would be to insist that whenever the effect of a 
pivotal voter’s change in vote from σ to τ is to switch the winner of the election from s to 
t, the pivotal voter must not have dropped t from above s according to σ, to below s 
according to τ (see Figure 2).  Equivalently, we may simply replace the “and” (from 
definition 3.2) with an “or”: 
 
Definition 3.3  A resolute social choice function F is one-way monotonic if every pivot 
(P, v, σ→s, τ→t)  for F satisfies s >σ t  or  t >τ s. 
 
Note that as a voter moves from σ to τ, neither of these two properties restricts any 
change in position of alternatives other than s or t (relative to each other, or to s and t).  
Thus two-way monotonicity requires that any change in election outcome between s and t 
depend solely on a voter’s switch in the relative ranking of s and t, while one-way 
monotonicity asks, more moderately, that a change in election outcome between s and t 
not be in total opposition to such a switch.  One might say that the smell of Arrovian 
I.I.A. (independence of irrelevant alternatives) is stronger for two-way monotonicity.  
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A resolute rule is strategy-proof if no voter can obtain a strictly preferred outcome by 
changing her current vote (which we interpret as expressing her sincere preferences) to a 
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different ranking (which we interpret as expressing preferences that are not sincere).  It is 
easy to see, then, that in the language of pivots, we can express the concept as follows: 
 
Definition 3.4  A resolute social choice function F is strategy-proof if every pivot               
(P, v, σ→s, τ→t)  for F satisfies s >σ t. 
 
It should be clear from 3.2 that two-way monotonicity is equivalent to strategy-proofness.  
Furthermore, the equivalence is of the “strong” domain-independent kind discussed 
earlier.  Thus “two-way monotonicity” could be substituted for “strategy-proofness” in 
any of the remarks that follow.   
 
If two-way monotonicity amounts to full strategy-proofness, what are the implications of 
one-way monotonicity?  We have defined a pivot (P, v, σ→s, τ→t) for a resolute voting 
rule F to be an ordered tuple, and we will occasionally speak as if σ were the initial 
choice of voter v, who at some later time switches her choice from σ  to  τ.  This implied 
order of first σ, then τ is purely a matter of notational or interpretational convenience, 
however, and plays no role in the definitions of one-way or two-way monotonicity 
(which remain the same if we switch to the oppositely ordered pivot (P, v, τ→t, σ→s) 
while leaving the rest of the definition alone).  In other words, such a pivot might as well 
be considered to be a type of unordered fragment of F’s graph as a function, containing 
just two inputs with their corresponding outputs.   
 
We may, if we wish, impose an interpretation on such a fragment, by supposing that one 
of σ or τ represents the sincere preferences of the pivotal voter v, and the other represents 
an attempt at manipulation, but there is nothing inherent in the pivot or the voting rule 
that points to one of these interpretations over the opposite one.  Notice that if we 
interpret σ as the sincere preferences and τ as the attempted manipulation, then the 
attempt to manipulate is successful if and only if  s <σ t; the opposite interpretation 
represents a successful attempt at manipulation if and only if t <τ s. 
 
Now consider the following assertion: 

“For no pivot for F does either interpretation ever represent a  
successful attempt at manipulation.” 

The following equivalent version 
“Every pivot for F satisfies both t <σ s and s <τ t.” 

is simply the definition of two-way monotonicity for F.  
 
On the other hand, the statement: 

“For no pivot for F do the two interpretations ever both represent   
successful attempts at manipulation.” 

is equivalent to 
“Whenever  one of the two interpretations of some pivot for F  represents a successful  

attempt at manipulation,  the opposite interpretation represents an unsuccessful attempt.” 

and is also equivalent to 
“Every pivot for F satisfies either t <σ s or s <τ t.” 

which is the definition of one-way monotonicity for F.   
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But in what we are calling an “unsuccessful attempt at manipulation,” the pivotal voter v 
does strictly worse by voting insincerely than by indicating her true preferences.  
Arguably, such a situation represents a disincentive to manipulate the rule F.  
Alternately, it represents a positive incentive to vote sincerely (rather than merely the 
absence of a disincentive), and so we’ll refer to such a situation as a strictly positive 
response for F.   
 
This line of reasoning leads us to the following interpretation of one-way monotonicity 
for a voting rule F: 

Every example of a manipulation of F is also an example of 
a strictly positive response when interpreted in the “opposite order.” 

In this sense, for a one-way monotonic rule any instance of manipulability can be seen as 
part of the cost of doing business – a payment made in order to respond appropriately to 
the will of the electorate. 
 
Next, we compare our new monotonicities to ones already in the literature. 
 
Definition 3.5  A resolute voting rule F is Maskin monotonic9 if for every pivot                      
(P, v, σ→s, τ→t), τ differs from σ  by moving some alternative from below s in σ  to 
above s in τ. 
 
As Muller and Satterthwaite (1977) show, Maskin monotonicity is equivalent to strategy-
proofness over the full domain. However, over arbitrary domains, strategy-proofness is 
generally stronger.10 It is also well-known that the Gibbard (1973) and Satterthwaite 
(1975) result about the equivalence between strategy-proofness and dictatoriality need 
not hold over arbitrary domains. As noted earlier, “strategy-proofness” can everywhere 
be replaced by “two-way monotonicity”.  
 
One of the best-known monotonicity properties is often just called “monotonicity”: 
 
Definition 3.6  A resolute voting rule F is simply monotonic if for every profile P with 
winning alternative s, if one voter changes by moving s up in her ranking (while making 
no changes in the relative order of the other alternatives) then s remains the winner. 
 
Simple monotonicity has no whiff of I.I.A.  Here is an equivalent formulation:  For every 
pivot (P, v, σ→s, τ→t), τ differs from σ  either by moving some alternative from below s 
in σ  to above s in τ, or by changing the relative order of some two  alternatives other 
than s. 
 
We note that simple and Maskin monotonicity share two features.  First, the alternative 
that is moved “from below s in σ  to above s in τ” need not be the new winner t.  Second, 

                                                
9 This apparently weak definition of Maskin monotonicity implies the standard version on a broad variety 
of domains.  For details, see footnotes 11 and 22. 
10 One can see Barberà [2001] for the result over arbitrary domains. 
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allowing several voters to change their votes simultaneously does not strengthen the 
property.11  In these respects, these two monotonicities resemble each other more closely 
than they do two-way or one-way monotonicities. Of course, Maskin monotonicity 
(hence two-way monotonicity) implies simple monotonicity over any domain. On the 
other hand, one-way monotonicity and simple monotonicity are logically independent as 
we formally state and show below: 
 
Proposition 3.7 One-way monotonicity and simple monotonicity are logically 
independent. 
 
Proof: The Copeland rule satisfies simple monotonicity, as does any net pairwise rule, 
provided that the rule’s reliance on net pairwise majorities is itself monotonic in the 
appropriate sense.  We show in Section 6, however, that Copeland fails to be one-way 
monotonic. In Section 4, Example 4.11 exemplifies a social choice rule which is one-way 
monotonic but not simply monotonic.           ❚ 
 
Properties such as Maskin monotonicity essentially hold of no reasonable voting rules, 
while simple monotonicity holds of virtually every such rule.  One consequence is that 
rather than basing comparisons on which monotonicity properties are or are not 
absolutely satisfied by various voting rules, some authors (see for example Aleskerov and 
Kurbanov [1999], D Smith [1999], Favardin et al [2002], and Favardin and 
Lepelley[2004]12) have considered relative strategy-proofness measures, based on how 
common are instances of manipulability, or on the probability that a randomly chosen 
profile is manipulable.  We’ll refer to such comparisons as frequency studies.  In effect, 
such studies count how often a given rule F “reacts badly” to a change in input, or they 
measure the probability of a bad reaction.13 
 
The papers on frequency studies share the goal of comparing a variety of common voting 
rules in terms of their degree of manipulability, and a number employ the following 
methodology:  first, some “reasonable” voting rule (in particular, one that is neutral and 
anonymous) is rendered resolute through the use of a fixed agenda to break ties.  Next, 
some measure14 is taken of what fraction of profiles are manipulable, for the resolute rule.  
 
Suppose, for the sake of argument, we were to apply this method to the (non-resolute) 
omninominator rule which, at each profile, picks all alternatives ranked as the best by at 

                                                
11 We introduce the “coalitional” forms of some monotonicity properties in 4.9 and 6.1 (see also 6.2 and 
its footnote).  In terms of that language, what we are asserting here is that the strong coalitional form of 
Maskin monotonicity is no stronger than the definition 3.5 version we define here, and that a similar 
statement holds for simple monotonicity. 
12

 A more complete list appears in the bibliography of Pritchard and Wilson [2006]. 
13 It is worth mentioning that Sen (1995) proposes a quite different way of evaluating the extent of non-
monotonicity of social choice functions, by extending them minimally to social choice correspondences that 
are Maskin monotonic. 
14

 The measures used vary considerably, both with respect to the underlying probability distribution over 
profiles, and with respect to other matters, such as whether or not to take account of the number of 
voters who can manipulate at a given profile. 
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least one voter.15 Further suppose that we limit ourselves to the three alternatives a, b, and 
c; require the number of voters to be more than a handful; and use the tie-breaking 
agenda a f b f c.  Now consider any profile in which no voter (except possibly for our 
focal voter v) ranks alternative a at the top of his or her ballot and at least one voter (other 
than v) has b at the top.  If v’s sincere preferences are c f a f b then a sincere vote leaves 
b as the winning alternative, while an insincere vote for a f c f b (or a f b f c) will elect 
alternative a, improving the result for v.  However, it is easy to see that (under the 
conditions specified) no other scenario leads to a manipulable profile. 
 
Now under any reasonable choice of probability distribution over profiles, the probability 
that no voter other than v ranks a at the top decreases very rapidly as a function of the 
number n of voters – so rapidly, in fact, that the probability that a randomly drawn profile 
is manipulable decreases more quickly for the omninominator rule16 than for any of the 
more standard rules considered in the existing frequency studies.  It is clear, however, 
that omninominator scores so well in terms of manipulability for a very simple reason.  It 
is almost never manipulable, because it almost never reacts at all to a change in a single 
vote; almost every profile leads to a three-way tie among a, b, and c, broken in favor of a 
by our agenda.  We can think of the root cause as being the lack of responsiveness of the 
omninominator rule, but lack of decisiveness, in the form of many three-way ties, also 
plays an important role. 
 
What, after all, is the job of a voting rule?  It is to respond to the will of the electorate by 
making decisions about the winners of elections.  The well-known impossibility results of 
social choice theory tell us how difficult it is to make these decisions without being 
caught up in some form of inconsistency.  So it should not surprise us that a voting rule 
such as omninominator can avoid making a large number of “bad” decisions by avoiding 
the making of many decisions at all.  Of course, the omninominator rule represents an 
extreme case.  Do such considerations play any role in comparisons among the voting 
systems actually considered in the published frequency studies?  This is a matter for 
future study, but we point out that some of the rules considered in these studies have 
many more ties than others (although none is as indecisive as omninominator). 
 
To return to the metaphor with which we began the introduction, these studies measure 
how often a rule fails to be monotonic in the ≤ sense, but not how often it succeeds in 
being monotonic in the < sense.  Our study of one-way monotonicity raises the 
possibility that some rules may pay a cost for looking better in the ≤ sense – part of that 
cost may be that the rule to scores less well in the < sense (which corresponds to what we 
have called a positive response).  So we may learn something interesting about the 
comparative strengths and weaknesses of various voting rules by measuring the 

                                                
15The omninominator rule was not studied by these authors, presumably because it has little appeal for 
many of the more common voting applications.   
16 For example, under the Independent Culture, or “IC,” assumption (see Berg [1985]), with the 
assumptions described above, the probability that a profile is manipulable under the omninominator rule 
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frequency of pre-agenda ties, and of post-agenda positive responses, in parallel with that 
of manipulable profiles. 
 
 
 
 
§4  Positive results: virtues and sensible rules 
   
We consider voting rules that can be characterized in terms of certain type of “score” that 
generalizes the score from a scoring rule.  All such rules are one-way monotonic. 
 
Definition 4.1  Given a finite set N of voters, and a set A of three or more alternatives, a 
virtue is a function V that returns a real number VR(x), for each combination of a profile 
R and an alternative x.  Any virtue V yields an induced voting rule F

V
, which declares 

the social choice for any profile R to be the set of alternatives x that maximize VR(x).  
This rule F

V
 need not be resolute. 

 
Example 4.2  Examples of virtues include: 

(i) For each scoring rule with associated vector 〈w〉 of scoring weights, let V〈w〉
R(x) 

denote the total score achieved by an alternative, using the given weights.            
The induced rule is, of course, the scoring rule for this vector. 

(ii) VOMNINOMINATOR
R(x) =  1, if at least one voter top-ranks alternative x 

                                         =  0, otherwise.                                                                                   
The induced rule is the omninominator rule (see, for example, Taylor [2005]), 
wherein the winners are all alternatives that are “nominated” by being top-ranked 
by at least one voter. 

(iii)VOMNIVETOER
R(x) =  -1, if at least one voter bottom-ranks alternative x 

                                         =   0, otherwise.                                                                                   
The induced rule is the omnivetoer rule, wherein the winners are all alternatives 
that are not “vetoed” by being ranked at the very bottom by at least one voter (or 
are all alternatives, if each alternative is bottom-ranked by at least one voter). 

(iv) Let VCOPELAND
R(x) be the Copeland score.  Then the Copeland rule is the induced 

system. 
 
In the absence of any further restrictions, the virtue concept is clearly an empty shell; any 
voting rule F is induced by the following trivial virtue: 
 

VF-TRIVIAL
R(x) =  1, if x is chosen by F at R 

                             =  0, otherwise.                                                                                   
 
So we see from (i) that a voting rule (e.g., the Borda count) can be induced by two quite 
different virtues. 
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Definition 4.3  Suppose V is a virtue.  Given any focus Ξ = (P, v, σ→s, τ→t), and any 
alternative x, let Δx

V
 (or just Δx) denote VP∧τ(x) - VP∧σ(x), x’s change in virtue.  If x and 

y are distinct alternatives, we’ll say that Ξ lifts x over y if x <σ y and y <τ x.  Then V is 
strictly sensible at Ξ if for every pair x, y of distinct alternatives such that Ξ lifts x over y, 
Δx

V
 > Δy

V
, and V is sensible at Ξ if for every pair x, y of distinct alternatives such that Ξ 

lifts x over y, Δx
V
 ≥ Δy

V
.  Finally, V is strictly sensible if it is strictly sensible at every 

focus, and is sensible if it is sensible at every focus. 
 
Notice that sensibility potentially makes demands of all alternatives at a focus (not just of 
the focal alternatives s and t). The following results are straightforward; proofs are left to 
the reader.  
 
Proposition 4.4  The following virtues are sensible: 

(i) V〈w〉, for every vector 〈w〉 of scoring weights.  
(ii) Any positive linear combination λ1V1 + . . . + λkVk of sensible virtues                     

V1, . . ., Vk.  (The real scalars λi are required to be positive.) 
(iii)Any sum V + W of a sensible virtue V with an initial endowment W.  (Every 

assignment c = 〈cy〉y ∈ A of real numbers to alternatives gives rise to an initial 
endowment virtue W for which WR(x) = cx for every profile R.) 

 
With respect to Example 4.2, it is straightforward to check that 

• V〈w〉 is strictly sensible for every strict vector 〈w〉 of scoring weights. 
• VOMNINOMINATOR, and VOMNIVETOER are sensible. 
• VCOPELAND and VBORDA-TRIVIAL are not sensible. 

 
 
Definition 4.5  A voting rule F is sensible (respectively, strictly sensible) if there exists a 
sensible (respectively, strictly sensible) virtue that induces it (in the sense of 4.1). 
 
Note that the Borda count is induced by a sensible virtue and also by a non-sensible 
virtue. However, the existence of the former suffices to qualify the Borda count as a 
sensible voting rule.  
 
Theorem 4.6  Every resolute and sensible voting rule F is one-way monotonic. 
 
Proof  Suppose F = F

V
 where V is sensible.  Let (P, v, σ→s, τ→t)  be a pivot for F, and 

assume by way of contradiction that t >σ s  and  s >τ t.  As V is sensible, Δs ≥ Δt.  As 
F(P∧σ) = s, VP∧σ(s) > VP∧σ(t).  Then VP∧τ(s) = VP∧σ(s) + Δs  > VP∧σ(t) + Δt = VP∧τ(t), 
which contradicts F(P∧τ) = t.       ❚ 
 
Not every one-way monotonic voting rule is sensible, as we show at the end of the 
section. Theorem 4.6 leads to the following corollary: 
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Corollary 4.7  For every sensible voting rule F and fixed agenda p, Fp is one-way 
monotonic. 
 
Proof  If F = F

V
 where V is sensible, then Fp = F

V + W
, where is W is the initial 

endowment given by any assignment 〈cy〉y ∈ A of real numbers chosen so as to induce the p 
order and so as to be too small to reverse any strict order relation induced by V.  More 
precisely, we require 

• x p y iff cx < cy, for each x, y ∈ A, and 
• VR(x) < VR(y) ⇒ VR(x) + cx < VR(y) + cy, for each x, y ∈ A and each profile R 

for N.               
By 4.4,V + W  is sensible, and so Fp is one-way monotonic.    ❚ 
 
Consequences of these results include: 

 every scoring rulep is one-way monotonic, and 
 the omninominatorp and omnivetoerp rules are one-way monotonic. 

 
The omninominator and omnivetoer virtues (and rules) may seem at first to be isolated 
special cases of sensible virtues that don’t correspond to scoring rules.  Are they pieces of 
a larger picture?  If V〈w〉

R(x) represents a scoring virtue, and K ≥ 0 is a constant, then a 
truncated scoring virtue will be any virtue of the form VR(x) = Min(K, V〈w〉

R(x)).  Clearly 
VOMNIVETOER andVOMNIVETOER are truncated versions of plurality score and anti-plurality 
score, respectively.  Truncated scoring virtues induce scoring rules with a threshold.17 Yet 
with 4 or more alternatives, there are truncated scoring virtues (such as truncated Borda 
count) whose induced rules are not one-way monotonic. 
 
Some additional insight can be gained through the following stronger version of 
sensibility.  A virtue V is absolutely sensible at a focus Ξ if for every pair x, y of distinct 
alternatives such that Ξ lifts x over y, Δx

V
 ≥ 0 and Δy

V
 ≤ 0; V is absolutely sensible if it 

is absolutely sensible at every focus, and a voting rule F is absolutely sensible if there 
exists at least one absolutely sensible virtue that induces F.  Clearly, any absolutely 
sensible virtue or rule is sensible.  Now it is straightforward to prove the following 
analogue to proposition 4.4: 
 
 Proposition 4.8  The following virtues are absolutely sensible: 

(i) VPLURALITY andVANTI-P 
(ii) Any positive linear combination of absolutely sensible virtues. 
(iii) Any sum V + W of an absolutely sensible virtue V with an initial endowment 

W.   

                                                
17 A detailed treatment of scoring rules with a threshold can be found in Saari  [1990].  Moreover, Erdem 
and Sanver [2005] show that minimal Maskin monotonic extensions of scoring rules can be expressed in 
terms of scoring rules with a threshold that varies as a function of the preference profile.   
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(iv) Any original and monotonic transform foV of an absolutely sensible virtue V 
(where f:R → R is original if f(0) = 0 and is monotonic if a ≥ b ⇒ f(a) ≥ f(b), 
for all a, b ∈ R).  

 
Note that truncation is a special case of an original monotonic transform.  Thanks to 
4.8(iv) (which has no analogue in proposition 4.4) we may add, to our list of one-way 
monotonic voting rules, examples such as the following: 

 the rule induced (after imposition of a tie-breaking agenda) by the virtue 
10[VPLURALITY]3 + V〈w〉 + 11VOMNIVETOER, for any vector 〈w〉 of scoring weights. 

For four or more alternatives, if 〈w〉 is the Borda count vector then V〈w〉 is sensible but not 
absolutely sensible.  However, with three alternatives every scoring vector is equivalent 
to18 some positive linear combination of the plurality and antiplurality vectors, so that 
every V〈w〉 is absolutely sensible, by 4.8(ii). 
 
The following example appears in Campbell and Kelly [2002]: Given a profile P, take 
each possible ranking and divide the number of voters who chose that ranking by 2, 
dropping any fractional part, to obtain an induced profile 1/2P  Apply plurality rule to 
1/2P, and then break ties using any fixed agenda.  If we set aside the tie-breaking step, 
their rule is induced by the following virtue:  C-KP(x) = VPLURALITY

(1/2)P(x).  It is easy to 
see that C-K is absolutely sensible, and it follows from Corollary 4.7 that their rule is 
one-way monotonic.  Interestingly, C-K is not a virtue that is “generated” by the closure 
properties of propositions 4.4 and 4.8. 
 
We close the section by showing that not every one-way monotonic rule is sensible.   
We first establish that sensibility implies a coalitional version of one-way monotonicity, 
defined as follows:  
 
Definition 4.9  A resolute voting rule is weakly coalitional one-way monotonic  if 
whenever a group of voters having a common preference ranking σ simultaneously all 
switch their rankings to some common ranking τ, and the effect is to switch the winning 
alternative from s alone to t alone, then either t <σ s or s <τ t.  Such a rule is strongly 
coalitional one-way monotonic if whenever a group of voters simultaneously all switch 
their rankings (which may differ) , and the effect is to switch the winning alternative from 
s alone to t alone, then there exists at least one voter v for whom  t <σ s or s <τ t (where σ 
is v’s initial ranking, which she switches to τ). 
 
Proposition 4.10  Every resolute and sensible voting rule is strongly coalitional one-way 
monotonic.   
 
The proof is quite similar to that of 4.6. 
 
                                                
18 Specifically, any scoring vector for three alternatives generates the same voting rule as 
some shifted version of that vector for which the middle scoring weight is 0, and any vector 
with middle weight 0 is a nonnegative linear combination of 〈1, 0, 0〉 and 〈0, 0, -1〉.  
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Example 4.11:  A resolute voting rule F that satisfies one-way monotonicity, but not  
weak coalitional one-way monotonicity (and not simple monotonicity).  It follows that F 
is not sensible. 
 
We use n = 2 voters and m = 3 alternatives: a, s, and t.  Consider the following rankings: 

α  β 
a  a 
t  s 
s  t 

Let G be the voting rule induced by the sensible virtue V + W, where V  is plurality 
score and W is the following initial endowment: 

s a 2.02 points 
t a 2.01 points 
a a 0.00 points 

Note that G is resolute and one-way monotonic, and also satisfies: 
1. G(α∧β) = s, 
2. G(2β) = s, 
3. G(2α) = s, 
4. G(δ∧α) = x where δ ∉ {α, β} and x is top-ranked in δ (so x ∈ {s, t}), and 
5. G(δ∧β) = x where δ ∉ {α, β} and x is top-ranked in δ (so x ∈ {s, t}). 

 
Our desired rule F is obtained by changing G’s value on exactly two exceptional 
profiles: 

1. F(α∧β) = a, and 
2. F(2β) = t. 

Note that F is not weakly coalitional one-way monotonic, for if both voters choose α and 
they simultaneously change to β then they both lift s from under t to over t, but the 
winner switches from s to t.  Also, F is not simply monotonic, as F(2α) = s and         
F(α∧β) = a. 
 
It remains to prove that F is one-way monotonic.  Consider any pivot in which the 
(single) pivotal voter changes from σ to τ.  As there are but two voters, the profile 
changes from P = σ∧λ to Q = τ∧λ. 
 
Case 1  Assume neither P nor Q are exceptional.  For the non-exceptional profiles, F 
agrees with G, which is one-way monotonic. 
 
Case 2  Assume P = 2β and Q = α∧β, or vice versa.  Then F(2β) = t and F (α∧β) = a, 
which does not violate one-way monotonicity. 
 
Case 3 Assume P = β∧α and Q = 2α, or vice versa.  Then F(β∧α) = a and F(2α) = s, 
which does not violate one-way monotonicity. 
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Case 4 Assume P = 2β and Q = δ∧β (where δ ∉ {α, β} and x is top-ranked in δ), or vice 
versa.  Then F(2β) = t and F(δ∧β) = x, which does not violate one-way monotonicity. 
 
Case 5 Assume P = α∧β and Q = δ∧β (where δ ∉ {α, β} and x is top-ranked in δ), or 
vice versa.  Then F(α∧β) = a and F(δ∧β) = x, which does not violate one-way 
monotonicity. 
 
Case 6 Assume P = β∧α and Q = δ∧α (where δ ∉ {α, β} and x is top-ranked in δ), or 
vice versa.  Then F(β∧α) = a and F(δ∧α) = x, which does not violate one-way 
monotonicity.             ❚ 
 
The example leaves open the possibility that some strong version19 of one-way 
monotonicity implies sensibility. 
 
 
 
 
§5  Participation and the no-show paradox 
 
Brams and Fishburn [1983] introduced the no-show paradox: one additional 
participating voter shows up to cast her vote, and the winner is then an alternative that is 
strictly inferior (according to the preferences of the participating voter) to the alternative 
who would have won had she not shown up.  Thus, the paradox represents a type of 
manipulation via abstention.  Moulin ([1988a] and [1988b]) expressed the corresponding 
form of strategy-proofness: 
 
Definition 5.1  A  (resolute) voting rule F for a variable electorate satisfies participation 
if for each  profile P for a finite set N of voters, and each preference ranking σ for a 
participating voter v, F(P∧σ) ≥σ F(P). 
 
By a variable-electorate voting rule F we mean a rule that is defined for every profile on 
every finite set N of voters satisfying N ⊆ N, where N denotes the set of natural numbers.  
Moulin [1988a,b] shows that every Condorcet extension is subject to the no-show 
paradox.  We noticed a connection to one-way monotonicity because we were obtaining 
some similar results, and in the next section we show that every Condorcet extension fails 
to satisfy one-way monotonicity.  Our proof is based closely on that by Moulin, but with 
some elaboration that employs ideas from the proof of theorem 5.5. 
 

                                                
19 It can be shown that any sensible rule F extends to a social welfare rule F* that satisfies a form of one-
way monotonicity appropriate to the social welfare context.  (A social welfare rule yields, as the outcome 
of the election, a ranking of all alternatives, with ties allowed.)  So any “strong version” of one-way 
monotonicity that implies sensibility might need to phrased in the social welfare context. 
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How are one-way monotonicity and participation related?  A comparison requires some 
attention to the difference in context. Certainly one-way monotonicity can be considered 
to be a property of variable-electorate voting rules, and this is the form of the property we 
use in this section.  But participation enforces some connection between what F does for 
profiles with n voters and what it does for profiles with n + 1, while one-way 
monotonicity does not.  As we see below, this makes it easy to construct a rule that 
satisfies one-way monotonicity but not participation.   
 
Such a comparison does not seem entirely fair, however – the better question may be 
whether one-way monotonicity implies participation in the presence of some mild axioms 
that do forge connections between election outcomes for different size electorates.  The 
theorem that follows provides a positive answer, but with a strong qualification: the 
second axiom is not exactly “mild.”  It also makes use of an additional property, half-way 
monotonicity, as an interpolant between one-way monotonicity and participation.  After 
giving the related definitions, we state the theorem. 
 
Definition 5.2  If m is any positive integer, and P is any profile, then mP is the profile 
obtained from P by replacing each single voter v of P with m voters having the same 
preference as v.  An anonymous, variable-electorate voting rule F is homogeneous if 
F(mP) = F(P) holds for all choices of P and m.20 
 
Definition 5.3  For any any (strict) ranking σ, let rev(σ) denoting the ranking obtained by 
reversing σ (so that x <σ y iff y <rev(σ) x).  For a profile P and a strict ranking σ let 
P∧σ∧rev(σ) denote the profile obtained by adding one additional voter with ranking σ 
and a second additional voter with ranking rev(σ).  An anonymous, variable-electorate 
voting rule F satisfies reversal cancellation if for all choices of P and σ,                                       
F (P) = F (P∧σ∧rev(σ)).21 
 
Definition 5.4  A resolute voting rule F is half-way monotonic if for every pivot             
(P, v, σ→s, rev(σ)→t)  for F,  s >σ t. 
 
Half-way monotonicity requires that whenever the effect of a pivotal voter’s total reversal 
in vote from σ to rev(σ) is to switch the winner of the election from s to t, the pivotal 

                                                
20 Homogeneity is a very weak form of reinforcement (also known as consistency), discussed in JH 
Smith [1973].  It is known to hold for almost every social choice rule, though Fishburn [1977] shows that 
the Dodgson and Young procedures can each fail to be homogeneous, depending on the some details in 
the precise formulation of these systems.  It is probably fair to deem homogeneity an “innocuous” 
assumption. 
 
21 Reversal cancellation is closely related to work by Saari [1994], [1999], and by Saari and Barney 
[2004], who consider the effect of reversing an entire profile, and examines the vector component of a 
profile corresponding to reversal.  Every net pairwise rule (see §2) satisfies reversal cancellation; these 
include Borda, Copeland, and Simpson.  But the property fails for other scoring rules, such as plurality and 
antiplurality (and fails for Hare) so it can hardly be called innocuous. 
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voter must have raised t from below s according to σ, to above s according to rev(σ).  
Notice that the following three requirements are each equivalent to the underlined phrase: 

 s >σ t 
 s >σ t  or  t >rev(σ) s 
 s >σ t  and  t >rev(σ) s 

One consequence is that if we were to start with our stronger property of two-way 
monotonicity (with the “and”) and weaken it by requiring that τ = rev(σ), we would get 
the same property – half-way monotonicity – as we do when we similarly weaken one-
way monotonicity. 
 
Note that half-way monotonicity has an interesting interpretation in terms of strategy- 
proofness.  A rule that fails to be half-way monotonic can be manipulated by some voter 
who completely misrepresents her preferences, in the sense that she announces a 
preference ranking that misstates every possible pairwise comparison among alternatives.   
 
 
Theorem 5.5  Consider properties of resolute, variable-electorate voting rules. Then 

(i) one-way monotonicity and participation are independent, 
(ii) participation ⇒ half-way monotonicity, 
(iii) [half-way monotonicity + homogeneity + reversal-cancellation] ⇒ 

participation, 
(iv) for the case of exactly three alternatives,                                      

participation ⇒ one-way monotonicity, and 
(v) for the case of exactly four alternatives,                                            

[participation + simple monotonicity] ⇒ one-way monotonicity. 
 
Corollary 5.6 (immediate)  For resolute, anonymous, variable-electorate voting rules 
satisfying both homogeneity and reversal cancellation: 

• Participation and half-way monotonicity are equivalent. In other words, 
participation is equivalent to the corresponding weak form of strategy-
proofness stating that no one can improve the outcome through such a 
complete misrepresentation. 

• Participation, half-way monotonicity, and one-way monotonicity are all 
equivalent for the special case of three alternatives, or of four alternatives 
with the additional assumption of simple monotonicity. 

 
We give the long proof of theorem 5.5 at the end of the section. 
 
In the presence of homogeneity + reversal-cancellation, might one-way monotonicity and 
participation be equivalent?  Our proof of part (i) leaves this possibility open, but we 
conjecture that one-way monotonicity is strictly stronger than participation with these 
assumptions. 
 
Our proof of theorem 5.5 exploits an additional similarity between one-way monotonicity 
and participation – there exists a notion of variable electorate virtue with some properties 
analogous to those of section 3.  Such a virtue V is defined for a variable electorate, and 
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is participation sensible if each profile P and ranking σ satisfies x ≥σ y ⇒ Δx
V
 ≥ Δy

V
, for 

every two alternatives x and y.  Here, Δx
V
 denotes VP∧σ(x) - VP(x).  The following 

proposition is now easy to verify, and we leave the proof to the reader. 
 
Proposition 5.7   The participation axiom is satisfied by any variable-electorate, resolute 
voting rule that is induced by a participation sensible variable electorate virtue. 
 
We now turn to the proof of theorem 5.5. 
 
Proof of theorem 5.5 
 
Part (i)  The following variable electorate voting rule satisfies one-way monotonicity but 
not participation:  Let F act as the plurality rulep for profiles with 5 or fewer voters, and 
as the Borda countp with 6 or more.  Then F is one-way monotonic by Corollary 4.7.  To 
see that participation fails, consider the 5-voter profile below, and a participating voter 
with ranking σ: 
 
   P      
 1 1 1 1 1   σ 
 s s t x y   x 
 t t y t t   y 
 x y x y x   s 
 y x s s s   t 
 
Note that F (P) = s, while F(P∧σ) = t. 
 
The following rule G for four alternatives satisfies participation, but not one-way 
monotonicity.  For the record, we note that G is anonymous, but does not satisfy 
neutrality, homogeneity, or reversal cancellation.  As predicted by part (v), G also fails to 
be simply monotonic.  Certainly it would be interesting to find a similar example with 
five or more alternatives, in which simple monotonicity holds. 
 

Description of G 
1) Our four alternatives are x, y, s, and t.   
2) Our preliminary version of G is the scoring rule with scoring weights 3, 2, 2, 1, 

but this is modified by the remaining clauses. 
3) Each alternative has a fixed endowment of points before the voting begins, which 

is added to that alternative’s point total, as determined by the profile at hand, to 
determine that alternatives final score.  The endowments are as follows: 

x a 2.03 points 
y a 0.02 points 
s a 2.01 points 
t a 2.0   points 
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The effect is the same as giving x, s, and t each 2 points, with 0 points to y, and 
imposing the tie-breaking agenda x f y f s f t on the penultimate outcome. 

4) There is a single profile, which we will refer to as “exceptional,” to which the 
above rules do not apply.  It is the profile Pβ in which there is exactly one voter, 
who has the following preference ranking β:     

β 
y 3.02 

   s 4.01 
t 4.0 
x 3.03 

The numbers in the right column give the final scores, so that the fractional 
amounts, in effect, break the tie in favor of s.  Instead, we declare that G(Pβ) = t.   

 
Proof that G satisfies participation, but fails both  
simple monotonicity and one-way monotonicity 

Consider the one-voter profile in which the single voter has the following ranking α: 
α 
y 3.02 

   t 4.0 
s 4.01 
x 3.03 

This is not the exceptional profile, and so G(Pα) = s.  The pivot (Pα, v, α→s, β→t) shows 
that G fails both simple monotonicity and one-way monotonicity.  To see that G satisfies 
participation consider the transition from some profile Q to the profile Q∧σ, where σ is 
the ranking of the newly participating voter. 
 
Case 1 Assume neither Q nor Q∧σ is Pβ.  Then participation holds for this transition, as 
G is completely given by clauses 1) - 3), which describe a participation-sensible virtue. 
 
Case 2 Assume Q∧σ = Pβ.  Then Q is the “empty profile” with no voters, G(Q) = x and 
G(Q∧σ) = t.  The participating voter has ranking β, which ranks t over x, so participation 
is satisfied for this transition. 
 
Case 3 Assume Q = Pβ.  We claim that G(Q∧σ) is equal to the top-ranked alternative of 
σ.  The claim suffices to show that participation is satisfied for this transition. 
 

Subcase 3.1  Assume that s is top-ranked by σ.  By referring to the final scores for Pβ 
we see that the final score for s in profile Pβ∧σ is 7.01, which is greater than any 
other final score, so that G(Pβ∧σ) = s. 

 
Subcase 3.2  Assume that t is top-ranked by σ.  The argument is similar to that of the 
previous subcase. 
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Subcase 3.3  Assume that y is top-ranked by σ.  Then the final score for y in profile 
Pβ∧σ is 6.02 and for x is at most 5.03; s and t each get at most 6.01, and G(Pβ∧σ) = y. 
 
Subcase 3.4  Assume that x is top-ranked by σ. Then the final score for x in profile 
Pβ∧σ is 6.03; each other alternative gets at most 6.02, and G(Pβ∧σ) = x. 

 
           
Parts (ii), (iv) and (v)  Our somewhat unorthodox approach will be to launch an attempt  
to prove that participation implies one-way monotonicity.  This proof will break down in 
one of the cases.  We will then observe that the obstacle is circumvented under the 
additional assumption that τ = rev(σ), or that there are only three alternatives.  
Alternatively, the obstacle is circumvented for exactly four alternatives if the rule is 
simply monotonic.  This approach suggests some insight into the relationship between the 
four properties under consideration.   
 
Assume that F satisfies participation, and that (P, v, σ→s, τ→t) is a pivot for F.  That is, 
F(P∧σ) = s, and F(P∧τ) = t.  We must show that s >σ t  or  t >τ s.  
 

Case 1  Assume that F(P) = s or F(P) = t.  If F(P) = s then as F(P∧τ) = t, t >τ s by 
participation.  If F(P) = t, then as F(P∧σ) = s, participation implies s >σ t. 
 
Case 2  Assume that F(P∧σ∧τ) = s  or F(P∧σ∧τ) = t.  If F(P∧σ∧τ) = s, then as  
F(P∧τ) = t, participation implies s >σ t.  If F(P∧σ∧τ) = t then as F(P∧σ) = s, 
participation implies t >τ s.  
 
Case 3  Assume that F(P) = x with x ∉ {s, t} and F(P∧σ∧τ) = y with y ∉ {s, t}. 
As F(P) = x and F(P∧σ) = s, participation implies s >σ x.  Also, from F(P) = x and  
F (P∧τ) = t, participation implies t >τ x.  But from s >σ x and t >τ x we can draw no 
conclusion about how σ or τ rank s versus t.  However, if  τ = rev(σ) then  
“s >σ x and t >τ x” becomes “s >σ x and t >rev(σ) x,” which is “s >σ x and “x >σ t,” 
whence s >σ t, as desired.  Similarly, from F(P∧σ∧τ) = y and F(P∧σ) = s, 
participation implies y >τ s.  Also from F(P∧σ∧τ) = y and F(P∧τ) = t, participation 
implies y >σ t.  Again, we can conclude nothing from “y >τ s and y >σ t,” unless                
τ = rev(σ), in which case s >σ t again follows.  Finally, observe that we in fact have 
four facts to work with: 

• s >σ x,  
• t >τ x, 
• y >τ s, and  
• y >σ t 

If we knew x = y, then we could conclude both s >σ t and t >τ s with no additional 
assumption that τ = rev(σ).  If there are exactly three alternatives, then the case 3 
assumption implies x = y, and we conclude that F is one-way monotonic.  If there are 
exactly four alternatives s, t, x, and y, then the four inequalities just listed, coupled 
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with the assumption that one-way monotonicity fails (in that t >σ s and s >τ t), 
completely determines the orderings σ and τ:  y >σ t >σ s >σ x, and y >τ s >τ t >τ x.  
As F(P∧σ) = s, and F(P∧τ) = t, these orderings yield a failure of simple 
monotonicity.  Thus, with exactly four alternatives, if F satisfies participation, then 
any failure of one-way monotonicity implies a failure of simple monotonicity. 

 
Part (iii)  Consider a failure of participation: a profile P and a single added voter v with 
ranking σ such that t = F(P∧σ) is below s = F(P)  according to the ranking σ.  That is, 
F(P∧σ) <σ F(P).  Then F((2P)∧σ∧rev(σ)) = F(2P) = F(P) = s, and F((2P)∧σ∧σ) = 
F(2(P∧σ)) = F(P∧σ) = t.  But the profile (2P)∧σ∧σ is obtained from the profile 
(2P)∧σ∧rev(σ) by having the voter v with preference ranking rev(σ) flip his ranking 
upside down so that it becomes σ.  This voter raises s from below t in rev(σ) to above t in 
σ, and the effect is that s now loses while t wins . . . a failure of half-way monotonicity. ❚ 
 
From theorem 5.5 together with Moulin’s result that every Condorcet extension fails 
participation, we can immediately conclude that every homogeneous and reversal-
canceling Condorcet extension fails one-way monotonicity.  However, our direct 
modification of Moulin’s proof in the next section avoids the need to assume 
homogeneity and reversal cancellation. 
 
 
 
 
§6  Negative results:  Condorcet extensions, Hare, and 
plurality run-off   
 
Our approach to the main result makes use of the following coalitional version of half-
way monotonicity: 
 
Definition 6.1  A resolute voting rule is weakly coalitional half-way monotonic  
if whenever a set of voters having identical strict ranking σ all simultaneously 
change their votes to rev(σ), and the effect is to switch the winner from s alone to 
t alone, it must be that s >σ t.   
 
Proposition 6.2  Half-way monotonicity implies weak coalitional half-way 
monotonicity.22 

                                                
22 The proof that follows applies to any path connected domain – any domain D with the property that 
every pair of profiles in D is linked by some ordered chain of “connecting” profiles such that each profile 
differs in only one voter from the next in the chain.  Note that the pathwise connected domains include all 
domains obtained as some cartesian product of restricted sets of preference rankings.  One can formulate 
a strong coalitional version of half-way monotonicity, as well as weak and strong coalitional versions of 
participation, simple monotonicity, and two-way monotonicity (with strong coalitional two-way 
monotonicity equivalent to coalitional strategy-proofness).  It then turns out that there is considerable 
variation as to whether the simple iteration argument used in the proof of 6.2 suffices to derive one or 
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Proof Assume a set of k voters having identical strict ranking σ all change their votes to 
rev(σ), and the effect is to switch the winner from s to t.  Let Pj be the profile in which j 
of these k voters have changed from σ to rev(σ), and k - j have not changed, and consider 
the sequence of profiles P = P0, P1, . . ., Pk.  Suppose the winners for the profiles                
P0, P1, . . ., Pk are s = x0, x1, . . ., xu = t and that xq is the (unique) winner for profiles             
Pj(q), Pj(q)+1, ..., Pj(q+1)-1, with 0 = j(1) < j(2) < . . . < j(u) ≤ t.  Then by ordinary half-way 
monotonicity applied to the transition from Pj(q+1)-1 to Pj(q+1), for r = 0, 1, . . ., u - 1, it 
follows that s >σ x1 >σ . . . >σ xu = t, so that s >σ t, as desired.        ❚ 
 
Theorem 6.3  With four or more alternatives and sufficiently many voters, no Condorcet 
extension satisfies weak coalitional half-way monotonicity. 
 
Corollary 6.4 With four or more alternatives and sufficiently many voters, no Condorcet 
extension satisfies half-way monotonicity, and so no Condorcet extension satisfies one-
way monotonicity. 
 
Proof of theorem 6.3 Our proof is an elaborated version of the argument in Exercise 
9.3(c), page 251 of Moulin [1988a].  The elaboration uses the ideas behind the 
homogeneity and reversal cancellation axioms, but does not require any assumption that 
these axioms hold.  (Rather, it uses that these axioms hold, speaking loosely, for 
Condorcet winners and for Simpson scores.)   Let C denote the profile, for m ≥ 4 
alternatives, in which each possible ranking occurs exactly once.  Note C has m! voters.  
For an arbitrary profile P with n = n(P) voters, let k = k(P) be the maximum integer j 
such that each of the m! rankings occurs at least j times in P. Informally, k(P) represents 
the “number of copies of C contained in P.”  Let n*(P) denote n(P) - (m!)k.  Informally, 
n*(P) is the number of voters remaining once one ignores the copies of C.  
 
Definition 6.5  Condition M holds of profile P if 2k(P) ≥ n*(P) + 2. 
 
Informally, condition M says that P contains “enough” copies of C relative to the number 
of voters who would remain if all copies of C were removed. 
 
Claim  Let F be a Condorcet extension satisfying weak coalitional half-way 
monotonicity.  Let a and b be any two alternatives, and P be any profile for four or more 
alternatives that meets the following three conditions:  

• condition M, 
• the net Simpson score t*(b) is even and t*(b) ≤ 0, and 
• Net(b > a) > -t*(b) + 2.  

Then F does not elect alternative a at profile P. 
 

                                                                                                                                            
both coalitional forms from the individual form.  In particular, this argument does show that the strong 
coalitional forms of Maskin monotonicity (which is, in fact, the standard form in the literature) and of 
simple monotonicity follow respectively from the individual forms we have defined here (see footnotes 10 
and 11) for every path connected domain.  On the other hand, Example 4.11 shows that the weak 
coalitional form of one-way monotonicity does not follow from the individual form.  
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Proof of claim Let a, b, and P be as stated. Note that in general, we know that t*(b) 
satisfies -n ≤ t*(b) ≤ n.  However, copies of profile C have no effect on the value of t*(b), 
so in fact we know -n* ≤ t*(b) ≤ n*, whence  -t*(b) + 2  ≤  n* + 2  ≤  2k.   
 

Let 

! 

r =
"t * (b) + 2

2
, a strictly positive integer.   Choose σ to be any ranking such that a is 

at the bottom, b is immediately above a, and all other alternatives are ranked above b.  By 
assumption M there exist at least r voters who voted σ.  Now let Q be obtained from P by 
having r voters who voted σ all change their votes to rev(σ).  For each alternative x other 
than a or b, the effect of these changes is that  

NetQ(b > x) = NetP(b > x) + 2r  = NetP(b > x) + -t*(b) + 2. 
As NetP(b > x) ≥ t*(b), this makes NetQ(b > x) > 0.  Furthermore 

NetQ(b > a) = NetP(b > a) - 2r  = NetP(b > a) + t*(b) - 2 > 0. 
Hence, b is a Condorcet winner for profile Q (and a is not a winner).  If a had been a 
winner for P, this would be a violation of weak coalitional half-way monotonicity.  This 
completes the proof of the claim.             
 
Now consider the following profile R: 6 6 10 8 

a a d b 
d d b c 
c b c a 
b c a d 

 
with n(R) = n*(R) = 30.  Let P be obtained from R by adding 28 copies of the profile C. 
Then n*(P) = n*(R) = 30. 
 
The claim can now be applied three times to show that b, c, and d cannot be elected at 
profile P, so that a is the sole winner.  (Note that when calculating any value of t* or 
Net(x > y), C can be ignored, so the values for P are the same as those for R.)  Next 
suppose that four of the voters from P who have ranking d > b > a > c, simultaneously 
reverse their rankings, yielding some new profile Q.  Note that n*(Q) = 30 + 8 = 38 and 
k(Q) = k(P) - 8 = 20, so that Q satisfies condition M.  Apply the claim two more times to 
show that neither a nor c can be elected at Q.  This contradicts our assumption that F is 
weakly coalitional half-way monotonic.             ❚ 
 
 
The situation painted by 6.3 seems somewhat odd.  On the one hand, it is easy to see that 
on the domain D

Condorcet
 of profiles having Condorcet winners, pairwise majority rule 

satisfies the strong property of two-way monotonicity.  But it is impossible to extend 
pairwise-majority rule over the full domain without violating the weaker property of one-
way monotonicity.  Meanwhile, there are rules such as scoring rules or the 
omninominator rule that “do less well” than does pairwise majority rule on D

Condorcet
, yet 

do better on the full domain.  It is almost as if pairwise majority rule paints itself into a 
corner by trying too hard on D

Condorcet
. 
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Next, we consider two closely related voting rules. 
 
Definition 6.7 In plurality with run-off, if no candidate achieves a strict majority of first-
place votes, there is a run-off between the two alternatives x and y achieving the greatest 
number of first-place votes: the winning alternative is whichever of x or y is ranked over 
the other by a majority of voters.  In the Hare rule (or “alternative vote,” as it termed in 
Moulin [1988a]) alternatives are eliminated in sequential stages, based on fewest first-
place votes.  Each stage considers only the relative rankings over surviving alternatives, 
and the winner is the last alternative (or final group of tied alternatives) remaining. 
 
The following profile R is adapted from one in Moulin [1988a] to show that neither of 
these two rules are simply monotonic: 

6 5 6 
a c b 
b a c Profile R 
c b a 

We will reason about both plurality run-off and Hare together. In the above profile R, c is 
eliminated, all 5 votes for c then turn to a, who wins the run-off against b.  However, if 
two of group of 6 who ranked b on top change rankings as indicated below 
 
6 5 4 2 
a c b a 
b a c b Profile R′′ 
c b a c 
 
Then in R′′ it is b who is eliminated and c wins the run-off against a.  This represents a 
failure of both simple monotonicity and weak coalitional one-way monotonicity – but can 
we obtain a failure of ordinary one-way monotonicity? It makes sense to consider the 
intermediate profile below, in which only one of the six b-voters has made the switch: 
 
6 5 5 1 
a c b a 
b a c b Profile R′ 
c b a c 
 
The most straightforward interpretation of “Plurality with run-off” seems to be that for 
this profile both alternatives b and c would be eliminated, leaving a the winner.  In that 
case, the transition from R′ to R′′ provides the desired failure of one-way monotonicity.  
This interpretation appears to be a standard one for the Hare (alternative vote), so we 
conclude that Hare fails one-way monotonicity.  What else might plurality run-off 
actually would do in a situation such as R′?   We imagine that the ambiguity may not be 
of much concern, at least not for large presidential elections in which exact ties are 
extremely unlikely (or even ill-defined, as truly exact vote counts do not seem to exist in 
the real world).   
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The (only) other alternative that suggests itself is that plurality run-off might declare a 
three-way tie among a, b, and c for R′.  In that case, if the tie-breaking dictator to throw 
the contest to a, then the transition from R′ to R′′ again provides the desired failure of 
one-way monotonicity.   This is not an entirely satisfactory solution, so we will phrase 
the corresponding proposition conservatively: 
 
Proposition 6.8  The Hare rule fails to be one-way monotonic.  Plurality run-off fails to 
satisfy weak coalitional one-way monotonicity. 
 
 
 
 
§7  Conclusions  
 
One-way monotonicity stands apart from previously studied monotonicity properties 
because of its distinct interpretation in terms of strategy-proofness.  This interpretation 
suggests the possibility of new approaches to the problem of measuring the relative 
degree of strategy-proofness for standard voting rules.  Our feeling is that one-way 
monotonicity has some additional normative appeal, apart from this interpretation, and 
discriminates in a useful way among realistic voting rules, so that it has some features 
common to each of the classes we described in the introduction. 
 
At the same time, one-way monotonicity shares important qualitative features with the 
participation axiom, in terms both of shared negative results for Condorcet extensions, 
and of positive results for voting rules induced by certain types of cardinal functions, 
called here sensible virtues, that respond appropriately to changes in a profile.  We do not 
yet understand the exact relationship between one-way monotonicity and sensible virtues, 
but it seems that the strong coalitional form, and the social welfare form, of one-way 
monotonicity play a role.  The same comments apply to participation. 
 
In terms of logical strength, there seems to be an intricate relationship among one-way 
monotonicity, half-way monotonicity, participation, simple monotonicity, and some other 
axioms that bridge the gap between properties for a fixed electorate and those for a 
variable electorate.  In one sense, theorem 5.5 together with the counterexamples 
provided in Campbell and Kelly [2002] and in this paper, already tell us a lot about these 
relationships. 
 
These counterexamples, however, typically fail to be neutral or fail to be anonymous, and 
so they do not address questions such as the following: 

() Does participation imply one-way monotonicity for neutral and anonymous rules? 

This question may at first seem to be poorly conceived, as neutral and anonymous rules 
would need to be rendered resolute before the question made sense, and the mechanism 
employed (such as a tie-breaking agenda) would destroy one or the other of neutrality and 
anonymity.  The question would become  

() Does participation imply one-way monotonicity for neutral and anonymous rules,  
after they are rendered resolute via a tie-breaking agenda? 

which may not seem to be all that interesting. 
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On the other hand, one might approach question () in a different way, by adapting the 
properties directly so that they make sense when applied to irresolute voting rules: 

() Does the irresolute form of participation imply the irresolute form  
of one-way monotonicity, for neutral and anonymous rules? 

Here is one possible way to extend one-way monotonicity to the irresolute context.  We 
define an irresolute pivot for a voting rule F to be a vector Θ = (P, v, σ→{s...}, τ→{t...}) 
satisfying: 

• v ∈ N is a voter and P is a profile for the set N - {v},  
• σ and τ are strict rankings of A, and s and t are alternatives in A, 
• s ∈ F (P∧σ),  
• t ∈ F(P∧τ), and 
• either t ∉ F (P∧σ) or s ∉ F (P∧τ).   

An irresolute voting rule F is then said to be irresolutely one-way monotonic if for every 
irresolute pivot (P, v, σ→{s...}, τ→{t...})  for F,  t <σ s or s <τ t.  In Sanver and Zwicker 
[2007], we show that an irresolute voting rule F is irresolutely one-way monotonic in this 
sense if and only if for every choice of a tie-breaking agenda p, the resolute rule Fp is 
one-way monotonic according to the definition we have used throughout this paper.  
 
One implication of this result is that the method we have used in this paper, of rendering 
voting rules resolute via a tie-breaking agenda, is less problematic than may first appear 
(see discussion in §2, including footnote 7).  Another message is that question () is 
more natural than one might think; in effect, it is identical to an instance of question 
().   
 
The most common approach for adapting strategy-proofness to the irresolute context is to 
extend, in any one of a number of possible ways, a voter’s preferences over individual 
alternatives to preferences over sets of alternatives (see, for example, Gärdenfors [1979], 
or Taylor [2005]).  This method may be applied to monotonicity properties, as well, 
suggesting an alternative to the approach sketched above.  In Sanver and Zwicker [2007] 
we compare several alternative approaches for generalizing one-way and two-way 
monotonicity,  simple monotonicity, and participation to the irresolute context.  In 
general, we find (perhaps unsurprisingly) that the study of irresolute monotonicity is rich 
and complex.  However, some of our results suggest that there may be enough agreement 
among the various approaches to avoid a devolution into Byzantine intricacy.  
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